

    
      Navigation

      
        	
          index

        	
          next |

        	antfarm 0.0.1 documentation 
 
      

    


    
      
          
            
  
Ant Farm


Overview

Antfarm is an ultra-light weight WSGI web framework.

Essentially, it wraps the WSGI call structure, providing helpful wrappers for
common needs.

You create an App instance, with a root view.  A “view” is a function which
accepts a Request instance, and returns a Response.




QuickStart

Into test.py place:

from antfarm import App, Response

application = App(root_view = lambda r: Response('Hello World!'))





And launch:


gunicorn test:application





Contents:



	The App class

	Request

	Response
	Response

	STATUS_CODES

	STATUS





	URL Dispatcher
	urls_dispather.register





	Utilities
	Functional





	Django equivalents
	Middleware

	URL Patterns





	Examples
	Hello World!

	Simple URL routing





	Cookbook
	Middleware

	Selective Middleware





	Testing
	Running tests

	Writing tests














Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2014, Curtis Maloney.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	antfarm 0.0.1 documentation 
 
      

    


    
      
          
            
  
The App class

The root of Antfarm is the antfarm.Ant class.


	
class App(root_view, **kwargs)

	
	
root_view

	This provides the view to call to handle all requests.

Any extra kwargs will be stored as self.opts









Each Antfarm application is an App instance.  Its configuration is passed to
the constructor, and the instance is a callable complying with the WSGI
interface (PEP3333).





          

      

      

    


    
         Copyright 2014, Curtis Maloney.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	antfarm 0.0.1 documentation 
 
      

    


    
      
          
            
  
Request

The Request class encapsulates a request, as well as providing commonly
needed parsing, such as cookies, querystrings, and body.


	
class Request(app, environ)

	
	
path

	The requested URI






	
method

	The HTTP Verb used in this request (e.g. GET, POST, OPTIONS, etc)






	
content_type

	The supplied content type of this request.






	
content_params

	A dict containing any additional parameters passed in the content type
header.






	
raw_cookies

	A SimpleCookie object.






	
cookies

	A simpler interface to raw_cookies, which is a dict of simply keys and
values.






	
body

	The raw contents of the request body.






	
query_data

	A dict of data parsed from the query string.






	
request_data

	If the request content is a HTTP Form, returns the parsed data.









The following attributes are lazy, and only parsed when accessed:


	raw_cookies

	cookies (reads raw_cookies)

	query_data

	body

	request_data (reads body)







          

      

      

    


    
         Copyright 2014, Curtis Maloney.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	antfarm 0.0.1 documentation 
 
      

    


    
      
          
            
  
Response

The response module includes the Response class, and a number of utilities.


Response


	
class Response(content='', status_code=STATUS.OK, content_type='text/html')

	
	
encoding

	




	
status_message

	




	
headers

	A dict of HTTP headers






	
cookies

	A SimpleCookie container for resposne cookies.






	
add_cookie(key, value, **kwargs)

	Add a cookie to the response.

If only key and value are passed, then dict access to self.cookies is
used.  Otherwise, a Morsel is instanciated, and the key, value and kwargs
passed to its set method.  Then it’s added to the cookies container.






	
status

	A helper to return the status code and message as a single string.










Response sub-classes

Additionally, there is a sub-class of Response for each HTTP Status code.






STATUS_CODES

A tuple of two-tuples, each of (status code, status message)




STATUS

An OrderedDict sub-class constructed from STATUS_CODES.

Additionally, the status codes can be accessed by name.

For example:

>>> STATUS.OK
200

>>> STATUS[200]
'OK'











          

      

      

    


    
         Copyright 2014, Curtis Maloney.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	antfarm 0.0.1 documentation 
 
      

    


    
      
          
            
  
URL Dispatcher

Included is a Django-esque URL dispatcher view.

from functools import partial

from antfarm.views import urls

from myapp import views

view = urls.url_dispatcher(
    (r'^/$', views.index),
    (r'^/(?P<slug>[-\w]+)/$', views.blog_detail),
    (r'^/(?P<slug>[-\w]+)/up/$', partial(views.blog_vote, direction=1)),
    (r'^/(?P<slug>[-\w]+)/$', partial(views.blog_vote, direction=-1)),
)

application = App(root_view=view)






Note

Unlike Django, the initial / on the url is not automatically removed. To get
a more django feel, you can include a pattern like this:

root_url = urls.url_dispatcher(
    (r'^/', root)
)







A view can raise a antfarm.urls.KeepLooking exception to tell the
dispatcher to continue scanning.


urls_dispather.register

You can dynamically add patterns to a urls_dispatcher by calling the instances
register method:

urls = url_dispatcher(....)

urls.register(pattern, view)





Additionally, you can decorate your views to add them to the url_dispatcher.

urls = url_dispatcher()

@urls.register(pattern)
def view(request...):






Nesting patterns

The currently unmatched portion of the path is stashed on the Request object as
remaining_path, so url_dispatcher views can be nested.

inner_patterns = url_dispatcher(
    ...
)

root_view = url_dispatcher(
    ...
    (r'^/inner/', inner_patterns),
)








Custominsing Not Found

To control what response is given when no match is found for a pattern, you can
sub-class url_dispatcher.  Override handle_not_found method.

class my_url_dispatcher(url_dispatcher):
    def handle_not_found(self, request):
        return http.NotFound("Could not find a page for %s" % request.path)













          

      

      

    


    
         Copyright 2014, Curtis Maloney.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	antfarm 0.0.1 documentation 
 
      

    


    
      
          
            
  
Utilities


Functional


buffered_property

This works much like Python’s property built-in, except it will only call
the function once per instance, saving the result on the objects’s __dict__.

In subsequent accesses to the property, Python will discover the value in
__dict__ first, and skip calling the property’s __get__.

In all other ways, this works as a normal class attribute.  Setting and del
work as expected.

By default, buffered_property will save the value to the name of the method
it decorators.  If you want to provide a buffered interface to a method, but keep
the method, you will need to pass the name argument:

def get_foo(self):
    ...

foo = buffered_property(get_foo, name='foo')













          

      

      

    


    
         Copyright 2014, Curtis Maloney.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	antfarm 0.0.1 documentation 
 
      

    


    
      
          
            
  
Django equivalents

Documented here are antfarm equivalents to Django idioms.


Middleware

The need for middleware is obviated by the fact everything is a view.  If you
want to hook in something to do work before matching a view, before calling a
view, or on the way out, you can just wrap that view in your own view.

This was a pattern proposed in Django also, to help disambiguate which
middleware methods are called when, but it has not been included yet as it is
too much of a backward-incompatible burden.

Further to this approach, it now becomes much simpler to selectively implement
middleware, as you can wrap only the views or dispatcher paths you choose.




URL Patterns

There is a Django-style URL dispatcher view included in views/urls.py

There is currently no support for named url patterns or reversing urls.







          

      

      

    


    
         Copyright 2014, Curtis Maloney.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	antfarm 0.0.1 documentation 
 
      

    


    
      
          
            
  
Examples

A simple way to run any of these examples is with gunicorn:

gunicorn -b localhost:8000 test:application






Hello World!

import antfarm

def index(request):
    return antfarm.Response('Hello World!')

application = antfarm.App(root_view=index)








Simple URL routing

import antfarm
from antfarm.views.urls import url_dispatcher

def index(request):
    return antfarm.Response('Index')

def detail(request, user_pk):
    return antfarm.Response('You asked for %s' % user_pk)

application = antfarm.App(
    root_view = url_dispatcher(
        (r'^/$', index),
        (r'^/details/(?P<user_pk>\d+)/$', detail),
    )
)











          

      

      

    


    
         Copyright 2014, Curtis Maloney.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	antfarm 0.0.1 documentation 
 
      

    


    
      
          
            
  
Cookbook

Below are some common patterns that have proven productive in using Antfarm.


Middleware

It’s easy to write “Middleware” style views, which do some work before or after
other views.

class middleware(object):
    def __init__(self, view):
        self.view

    def __call__(self, request, *args, **kwargs):
        # Work before
        try:
            return self.view(request, *args, **kwargs)
        except ...:
            # Catch errors
        finally:
            # Work after _always_


 application = App(root_view = middleware(normalview))








Selective Middleware

An idea which resurfaces frequently in the Django community is one of applying
middleware to a sub-set of the URL tree.  The only existing solution is to
apply a decorator to all the views [tedious and error prone] or to complicate
the middleware with ways to denote what it is to apply to.

In Antfarm, this problem is trivially solved, since middleware are just views
which wrap views.

A simple example is making some URLs password protected, but not others.

private_urls = url_dispatcher(
    (r'^$', views.user_list),
    (r'^(?P<user_id>\d+)/$', views.user_detail),
)

root_urls = url_dispatcher(
    (r'^/$', views.index),
    (r'^/login/$', views.login),
    (r'^/users/', login_required(private_urls)),
)











          

      

      

    


    
         Copyright 2014, Curtis Maloney.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	antfarm 0.0.1 documentation 
 
      

    


    
      
          
            
  
Testing


Running tests

A test suite using the standard library’s unittest package exists in
the tests directory of the git repository, it can be run from the root
of the repository via:

python tests





To run only the tests in a specific file, you may do:

python tests/<filename>.py





To generate a coverage [http://nedbatchelder.com/code/coverage/] report for the test suite:

coverage run tests/__main__.py





Once the coverage data is generated, you can report on it [http://nedbatchelder.com/code/coverage/cmd.html#cmd-reporting] using your
preferred output method.




Writing tests

New tests should either be added to the appropriate test file, if it already
exists, or to a new file in the tests directory, whose name is prefixed with
test_:

tests/test_<thing_to_test>.py





Test classes should be written such that they subclass unittest.TestCase
and are named with a Test suffix:

from unittest import TestCase

class ThingTest(TestCase):
    pass





Individual test methods should be named and numbered like so:

class ThingTest(TestCase):
    def test_001_function_description():
        pass

    def test_002_another_function_description():
        pass





Finally, to allow individual test files to be without the rest of the suite,
the file should end with the following if statement:

from unittest import main

if __name__ == '__main__':
    main()











          

      

      

    


    
         Copyright 2014, Curtis Maloney.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	antfarm 0.0.1 documentation 
 
      

    


    
      
          
            

Index



 A
 | B
 | C
 | E
 | H
 | M
 | P
 | Q
 | R
 | S
 


A


  	
      
  	add_cookie() (Response method)
  


  

  	
      
  	App (built-in class)
  


  





B


  	
      
  	body (Request attribute)
  


  





C


  	
      
  	content_params (Request attribute)
  


      
  	content_type (Request attribute)
  


  

  	
      
  	cookies (Request attribute)
  


      	
        
  	(Response attribute)
  


      


  





E


  	
      
  	encoding (Response attribute)
  


  





H


  	
      
  	headers (Response attribute)
  


  





M


  	
      
  	method (Request attribute)
  


  





P


  	
      
  	path (Request attribute)
  


  





Q


  	
      
  	query_data (Request attribute)
  


  





R


  	
      
  	raw_cookies (Request attribute)
  


      
  	Request (built-in class)
  


      
  	request_data (Request attribute)
  


  

  	
      
  	Response (built-in class)
  


      
  	root_view (App attribute)
  


  





S


  	
      
  	status (Response attribute)
  


  

  	
      
  	status_message (Response attribute)
  


  







          

      

      

    


    
         Copyright 2014, Curtis Maloney.
      Created using Sphinx 1.2.2.
    

  _static/comment.png





_static/minus.png





_static/comment-close.png





_static/up.png





_static/plus.png





_static/up-pressed.png





_static/down-pressed.png





_static/comment-bright.png





search.html


    
      Navigation


      
        		
          index


        		antfarm 0.0.1 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2014, Curtis Maloney.
      Created using Sphinx 1.2.2.
    

  

_static/file.png





_static/down.png





_static/ajax-loader.gif





